

COURSE RECORD

COURSE RECORD	
Code	ECE653
Name	Power System Operations and Controls
Hour per week	3 (3 + 0)
Credit	3
ECTS	7,5
Level/Year	Graduate
Semester	Fall-Spring
Type	Elective
Location	In Class
Prerequisites	ECE 652
Special Conditions	
Coordinator(s)	Doç. Dr. Ahmet Onen
Webpage	
Content	 Power generation characteristic and its importance,
	 Economic dispatch of thermal units and calculations,
	 Design transmission system and loss calculation,
	 Restructure of electric system and how to calculate energy prices
	 Automatic Generation Control and applications,
	 Load Forecasting,
	 State Estimation and Bad Data Analysis,
	 Optimum load flow,
	Online load flow,
Objectives	Power system control application, optimum power flow calculation and
	economic dispatch and usage of a programming language during the course of
	these analysis.
Learning	LO-1. learn the principles of control system in power systems
Outcomes	LO-2. learn the power generation characteristic
	LO-3. learn the how to economic dispatch of thermal units
	LO-4. learn how to design transmission system and loss calculation
	LO-5. learn restructure of electric system and how to calculate energy prices
	(LMP)
	LO-6. learn how to apply control in power system
	LO-7. learn how to forecast load for future years and state estimation
	LO-8. Computer Application for Power systems
Requirements	Expected requirements of the course.
Reading List	Recommended readings, text books, etc.
Ethical Rules and	Will be announced during the class.
Course Policy	

LEARNING ACTIVITIES

Activities	Number	Weight (%)
Lecture	3	25%
Group Works	8	25%
Presentations	7	25%
Site Visits	1	25%
	Tota	al 100

ASSESSMENT

Evaluation Criteria	Weight (%)
Quizzes	15%
Weekly Assignments	20%
Group Project Assignments & Presentations	10%

Attendance/Participation	05%	
Final Exam/Submission	50%	
	Total 100%	

For a detailed description of grading policy and scale, please refer to the website https://goo.gl/HbPM2y section 28.

COURSE LOAD *Please, use this one as a reference for your course*

Activity	Duration	Quantity	Work Load
	(hour)		(hour)
In class activities	2	14	28
Lab	1	7	7
Group work	2	12	24
Research (web, library)	2	12	24
Required Readings	2	10	20
Pre-work for Presentation	2	7	14
Lab reports	1	7	7
		General Sum	124

ECTS: 7,5 (Work Load/25-30)

CONTRIBUTION TO PROGRAMME OUTCOMES*

•	AN TOT ROUGHT IN THE COTTON TED						
		P01	P02	P03	P04	P05	P06
	L01	1	3	4	5	4	3
	LO2	5	5	4	5	4	3
	LO3	3	4	2	2	4	1
	LO4	1	3	4	5	4	3
	LO5	5	5	4	5	4	3
	L06	3	4	2	2	4	1
	LO7	5	5	4	5	4	3
	LO8	3	4	2	2	4	1

^{*} Contribution Level: 0: None, 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

WEEKLY SCHEDULE

WEI	WEEKLY SCHEDULE					
W	Topic	Outcomes				
1	Power system overview: Review of basic power equations	L01, L02				
	Power generation characteristic Steam generation units, and					
	gas turbine					
2	Economic dispatch of thermal units: Economic calculation and	L01, L02, L03				
	lamda iteration method	_				
	Economic dispatch of thermal units first and second order					
	gradient method and economic calculations					
3	Tranmission Losses: Load flow calculation on transmission	L01, L03				
	lines	_				
	Tranmission Losses: Loss calculation by using B matrix and					
	penalty factor					
4	MIDTERM EXAM-1	_				
	Restructure of electric system: ISO, RTO and power exchange					
5	Restructure of electric system: LMP calculation and Fixed	L01, L02, L03				
	transmission Right	_				
	Power system overview: Review of basic power equations					
6	Power generation characteristic Steam generation units, and	LO4, LO5				
	gas turbine	_				
	Economic dispatch of thermal units: Economic calculation and	_				
	lamda iteration method					
7	Economic dispatch of thermal units first and second order	L05, L06				
	gradient method and economic calculations					

	Tranmission Losses: Load flow calculation on transmission	
	lines	
8	Tranmission Losses: Loss calculation by using B matrix and	LO4, LO5
	penalty factor	
	MIDTERM EXAM-1	_
9	Restructure of electric system: ISO, RTO and power exchange	L06, L07
	Restructure of electric system: LMP calculation and Fixed	_
	transmission Right	
10	Unit Commintment: calculation of optimum order for thermal	L07, L08
	units	
	Load Forecasting: Load Calculation for different weather	_
	condition	
11	MIDTERM EXAM-2 or presentation of review	
	Optimum Load Flow: Optimum load flow calculation with	_
	existing of constraints	
12	State Estimation and Bad Data Analysis: Voltage and phase	LO4, LO5
	angle calculation when measurements are not avaliable	_
13	Automatic Generation Control: Generator model, tie-line and	LO1, LO2
	load model and control of all.	_
	Unit Commintment: calculation of optimum order for thermal	
	units	
14	Load Forecasting: Load Calculation for different weather	LO1, LO2
	condition	_
	MIDTERM EXAM-2 or presentation of review	
15	Optimum Load Flow: Optimum load flow calculation with	LO1, LO2
	existing of constraints	_
	State Estimation and Bad Data Analysis: Voltage and phase	
	angle calculation when measurements are not avaliable	

Prepared by Doç. Dr. Ahmet ONEN Date 09.04.2018